3.2.12 \(\int \frac {x^2 (4+x^2+3 x^4+5 x^6)}{(3+2 x^2+x^4)^2} \, dx\) [112]

3.2.12.1 Optimal result
3.2.12.2 Mathematica [C] (verified)
3.2.12.3 Rubi [A] (verified)
3.2.12.4 Maple [C] (verified)
3.2.12.5 Fricas [C] (verification not implemented)
3.2.12.6 Sympy [A] (verification not implemented)
3.2.12.7 Maxima [F]
3.2.12.8 Giac [B] (verification not implemented)
3.2.12.9 Mupad [B] (verification not implemented)

3.2.12.1 Optimal result

Integrand size = 31, antiderivative size = 225 \[ \int \frac {x^2 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=5 x+\frac {25 x \left (1+x^2\right )}{8 \left (3+2 x^2+x^4\right )}+\frac {1}{16} \sqrt {\frac {1}{6} \left (19291+12899 \sqrt {3}\right )} \arctan \left (\frac {\sqrt {2 \left (-1+\sqrt {3}\right )}-2 x}{\sqrt {2 \left (1+\sqrt {3}\right )}}\right )-\frac {1}{16} \sqrt {\frac {1}{6} \left (19291+12899 \sqrt {3}\right )} \arctan \left (\frac {\sqrt {2 \left (-1+\sqrt {3}\right )}+2 x}{\sqrt {2 \left (1+\sqrt {3}\right )}}\right )-\frac {1}{32} \sqrt {\frac {1}{6} \left (-19291+12899 \sqrt {3}\right )} \log \left (\sqrt {3}-\sqrt {2 \left (-1+\sqrt {3}\right )} x+x^2\right )+\frac {1}{32} \sqrt {\frac {1}{6} \left (-19291+12899 \sqrt {3}\right )} \log \left (\sqrt {3}+\sqrt {2 \left (-1+\sqrt {3}\right )} x+x^2\right ) \]

output
5*x+25/8*x*(x^2+1)/(x^4+2*x^2+3)-1/192*ln(x^2+3^(1/2)-x*(-2+2*3^(1/2))^(1/ 
2))*(-115746+77394*3^(1/2))^(1/2)+1/192*ln(x^2+3^(1/2)+x*(-2+2*3^(1/2))^(1 
/2))*(-115746+77394*3^(1/2))^(1/2)+1/96*arctan((-2*x+(-2+2*3^(1/2))^(1/2)) 
/(2+2*3^(1/2))^(1/2))*(115746+77394*3^(1/2))^(1/2)-1/96*arctan((2*x+(-2+2* 
3^(1/2))^(1/2))/(2+2*3^(1/2))^(1/2))*(115746+77394*3^(1/2))^(1/2)
 
3.2.12.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.54 \[ \int \frac {x^2 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=5 x+\frac {25 \left (x+x^3\right )}{8 \left (3+2 x^2+x^4\right )}-\frac {\left (-34 i+111 \sqrt {2}\right ) \arctan \left (\frac {x}{\sqrt {1-i \sqrt {2}}}\right )}{16 \sqrt {2-2 i \sqrt {2}}}-\frac {\left (34 i+111 \sqrt {2}\right ) \arctan \left (\frac {x}{\sqrt {1+i \sqrt {2}}}\right )}{16 \sqrt {2+2 i \sqrt {2}}} \]

input
Integrate[(x^2*(4 + x^2 + 3*x^4 + 5*x^6))/(3 + 2*x^2 + x^4)^2,x]
 
output
5*x + (25*(x + x^3))/(8*(3 + 2*x^2 + x^4)) - ((-34*I + 111*Sqrt[2])*ArcTan 
[x/Sqrt[1 - I*Sqrt[2]]])/(16*Sqrt[2 - (2*I)*Sqrt[2]]) - ((34*I + 111*Sqrt[ 
2])*ArcTan[x/Sqrt[1 + I*Sqrt[2]]])/(16*Sqrt[2 + (2*I)*Sqrt[2]])
 
3.2.12.3 Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.02, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {2197, 27, 2205, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (5 x^6+3 x^4+x^2+4\right )}{\left (x^4+2 x^2+3\right )^2} \, dx\)

\(\Big \downarrow \) 2197

\(\displaystyle \frac {1}{48} \int -\frac {6 \left (-40 x^4+31 x^2+25\right )}{x^4+2 x^2+3}dx+\frac {25 x \left (x^2+1\right )}{8 \left (x^4+2 x^2+3\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {25 x \left (x^2+1\right )}{8 \left (x^4+2 x^2+3\right )}-\frac {1}{8} \int \frac {-40 x^4+31 x^2+25}{x^4+2 x^2+3}dx\)

\(\Big \downarrow \) 2205

\(\displaystyle \frac {25 x \left (x^2+1\right )}{8 \left (x^4+2 x^2+3\right )}-\frac {1}{8} \int \left (\frac {111 x^2+145}{x^4+2 x^2+3}-40\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{8} \left (\frac {1}{2} \sqrt {\frac {1}{6} \left (19291+12899 \sqrt {3}\right )} \arctan \left (\frac {\sqrt {2 \left (\sqrt {3}-1\right )}-2 x}{\sqrt {2 \left (1+\sqrt {3}\right )}}\right )-\frac {1}{2} \sqrt {\frac {1}{6} \left (19291+12899 \sqrt {3}\right )} \arctan \left (\frac {2 x+\sqrt {2 \left (\sqrt {3}-1\right )}}{\sqrt {2 \left (1+\sqrt {3}\right )}}\right )-\frac {1}{4} \sqrt {\frac {1}{6} \left (12899 \sqrt {3}-19291\right )} \log \left (x^2-\sqrt {2 \left (\sqrt {3}-1\right )} x+\sqrt {3}\right )+\frac {1}{4} \sqrt {\frac {1}{6} \left (12899 \sqrt {3}-19291\right )} \log \left (x^2+\sqrt {2 \left (\sqrt {3}-1\right )} x+\sqrt {3}\right )+40 x\right )+\frac {25 x \left (x^2+1\right )}{8 \left (x^4+2 x^2+3\right )}\)

input
Int[(x^2*(4 + x^2 + 3*x^4 + 5*x^6))/(3 + 2*x^2 + x^4)^2,x]
 
output
(25*x*(1 + x^2))/(8*(3 + 2*x^2 + x^4)) + (40*x + (Sqrt[(19291 + 12899*Sqrt 
[3])/6]*ArcTan[(Sqrt[2*(-1 + Sqrt[3])] - 2*x)/Sqrt[2*(1 + Sqrt[3])]])/2 - 
(Sqrt[(19291 + 12899*Sqrt[3])/6]*ArcTan[(Sqrt[2*(-1 + Sqrt[3])] + 2*x)/Sqr 
t[2*(1 + Sqrt[3])]])/2 - (Sqrt[(-19291 + 12899*Sqrt[3])/6]*Log[Sqrt[3] - S 
qrt[2*(-1 + Sqrt[3])]*x + x^2])/4 + (Sqrt[(-19291 + 12899*Sqrt[3])/6]*Log[ 
Sqrt[3] + Sqrt[2*(-1 + Sqrt[3])]*x + x^2])/4)/8
 

3.2.12.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2197
Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> 
 With[{Qx = PolynomialQuotient[x^m*Pq, a + b*x^2 + c*x^4, x], d = Coeff[Pol 
ynomialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Polynomial 
Remainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4) 
^(p + 1)*((a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b^2 
 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c*x 
^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*Qx + b^2*d*(2*p + 3) - 2* 
a*c*d*(4*p + 5) - a*b*e + c*(4*p + 7)*(b*d - 2*a*e)*x^2, x], x], x]] /; Fre 
eQ[{a, b, c}, x] && PolyQ[Pq, x^2] && GtQ[Expon[Pq, x^2], 1] && NeQ[b^2 - 4 
*a*c, 0] && LtQ[p, -1] && IGtQ[m/2, 0]
 

rule 2205
Int[(Px_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandInte 
grand[Px/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x^ 
2] && Expon[Px, x^2] > 1
 
3.2.12.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.28

method result size
risch \(5 x +\frac {\frac {25}{8} x^{3}+\frac {25}{8} x}{x^{4}+2 x^{2}+3}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}+2 \textit {\_Z}^{2}+3\right )}{\sum }\frac {\left (-111 \textit {\_R}^{2}-145\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}+\textit {\_R}}\right )}{32}\) \(64\)
default \(5 x -\frac {-\frac {25}{8} x^{3}-\frac {25}{8} x}{x^{4}+2 x^{2}+3}-\frac {\left (94 \sqrt {-2+2 \sqrt {3}}\, \sqrt {3}-51 \sqrt {-2+2 \sqrt {3}}\right ) \ln \left (x^{2}+\sqrt {3}-x \sqrt {-2+2 \sqrt {3}}\right )}{192}-\frac {\left (290 \sqrt {3}+\frac {\left (94 \sqrt {-2+2 \sqrt {3}}\, \sqrt {3}-51 \sqrt {-2+2 \sqrt {3}}\right ) \sqrt {-2+2 \sqrt {3}}}{2}\right ) \arctan \left (\frac {2 x -\sqrt {-2+2 \sqrt {3}}}{\sqrt {2+2 \sqrt {3}}}\right )}{48 \sqrt {2+2 \sqrt {3}}}-\frac {\left (-94 \sqrt {-2+2 \sqrt {3}}\, \sqrt {3}+51 \sqrt {-2+2 \sqrt {3}}\right ) \ln \left (x^{2}+\sqrt {3}+x \sqrt {-2+2 \sqrt {3}}\right )}{192}-\frac {\left (290 \sqrt {3}-\frac {\left (-94 \sqrt {-2+2 \sqrt {3}}\, \sqrt {3}+51 \sqrt {-2+2 \sqrt {3}}\right ) \sqrt {-2+2 \sqrt {3}}}{2}\right ) \arctan \left (\frac {2 x +\sqrt {-2+2 \sqrt {3}}}{\sqrt {2+2 \sqrt {3}}}\right )}{48 \sqrt {2+2 \sqrt {3}}}\) \(281\)

input
int(x^2*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x,method=_RETURNVERBOSE)
 
output
5*x+(25/8*x^3+25/8*x)/(x^4+2*x^2+3)+1/32*sum((-111*_R^2-145)/(_R^3+_R)*ln( 
x-_R),_R=RootOf(_Z^4+2*_Z^2+3))
 
3.2.12.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.99 \[ \int \frac {x^2 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=\frac {480 \, x^{5} + 1260 \, x^{3} - \sqrt {3} {\left (x^{4} + 2 \, x^{2} + 3\right )} \sqrt {7969 i \, \sqrt {2} - 19291} \log \left (\sqrt {3} \sqrt {7969 i \, \sqrt {2} - 19291} {\left (94 i \, \sqrt {2} + 145\right )} + 38697 \, x\right ) + \sqrt {3} {\left (x^{4} + 2 \, x^{2} + 3\right )} \sqrt {7969 i \, \sqrt {2} - 19291} \log \left (\sqrt {3} \sqrt {7969 i \, \sqrt {2} - 19291} {\left (-94 i \, \sqrt {2} - 145\right )} + 38697 \, x\right ) + \sqrt {3} {\left (x^{4} + 2 \, x^{2} + 3\right )} \sqrt {-7969 i \, \sqrt {2} - 19291} \log \left (\sqrt {3} {\left (94 i \, \sqrt {2} - 145\right )} \sqrt {-7969 i \, \sqrt {2} - 19291} + 38697 \, x\right ) - \sqrt {3} {\left (x^{4} + 2 \, x^{2} + 3\right )} \sqrt {-7969 i \, \sqrt {2} - 19291} \log \left (\sqrt {3} {\left (-94 i \, \sqrt {2} + 145\right )} \sqrt {-7969 i \, \sqrt {2} - 19291} + 38697 \, x\right ) + 1740 \, x}{96 \, {\left (x^{4} + 2 \, x^{2} + 3\right )}} \]

input
integrate(x^2*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x, algorithm="fricas")
 
output
1/96*(480*x^5 + 1260*x^3 - sqrt(3)*(x^4 + 2*x^2 + 3)*sqrt(7969*I*sqrt(2) - 
 19291)*log(sqrt(3)*sqrt(7969*I*sqrt(2) - 19291)*(94*I*sqrt(2) + 145) + 38 
697*x) + sqrt(3)*(x^4 + 2*x^2 + 3)*sqrt(7969*I*sqrt(2) - 19291)*log(sqrt(3 
)*sqrt(7969*I*sqrt(2) - 19291)*(-94*I*sqrt(2) - 145) + 38697*x) + sqrt(3)* 
(x^4 + 2*x^2 + 3)*sqrt(-7969*I*sqrt(2) - 19291)*log(sqrt(3)*(94*I*sqrt(2) 
- 145)*sqrt(-7969*I*sqrt(2) - 19291) + 38697*x) - sqrt(3)*(x^4 + 2*x^2 + 3 
)*sqrt(-7969*I*sqrt(2) - 19291)*log(sqrt(3)*(-94*I*sqrt(2) + 145)*sqrt(-79 
69*I*sqrt(2) - 19291) + 38697*x) + 1740*x)/(x^4 + 2*x^2 + 3)
 
3.2.12.6 Sympy [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.23 \[ \int \frac {x^2 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=5 x + \frac {25 x^{3} + 25 x}{8 x^{4} + 16 x^{2} + 24} + \operatorname {RootSum} {\left (3145728 t^{4} + 39507968 t^{2} + 166384201, \left ( t \mapsto t \log {\left (- \frac {9240576 t^{3}}{102792131} - \frac {95003488 t}{102792131} + x \right )} \right )\right )} \]

input
integrate(x**2*(5*x**6+3*x**4+x**2+4)/(x**4+2*x**2+3)**2,x)
 
output
5*x + (25*x**3 + 25*x)/(8*x**4 + 16*x**2 + 24) + RootSum(3145728*_t**4 + 3 
9507968*_t**2 + 166384201, Lambda(_t, _t*log(-9240576*_t**3/102792131 - 95 
003488*_t/102792131 + x)))
 
3.2.12.7 Maxima [F]

\[ \int \frac {x^2 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=\int { \frac {{\left (5 \, x^{6} + 3 \, x^{4} + x^{2} + 4\right )} x^{2}}{{\left (x^{4} + 2 \, x^{2} + 3\right )}^{2}} \,d x } \]

input
integrate(x^2*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x, algorithm="maxima")
 
output
5*x + 25/8*(x^3 + x)/(x^4 + 2*x^2 + 3) - 1/8*integrate((111*x^2 + 145)/(x^ 
4 + 2*x^2 + 3), x)
 
3.2.12.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 566 vs. \(2 (158) = 316\).

Time = 0.61 (sec) , antiderivative size = 566, normalized size of antiderivative = 2.52 \[ \int \frac {x^2 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=\frac {1}{6912} \, \sqrt {2} {\left (37 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 666 \cdot 3^{\frac {3}{4}} \sqrt {2} \sqrt {6 \, \sqrt {3} + 18} {\left (\sqrt {3} - 3\right )} - 666 \cdot 3^{\frac {3}{4}} {\left (\sqrt {3} + 3\right )} \sqrt {-6 \, \sqrt {3} + 18} + 37 \cdot 3^{\frac {3}{4}} {\left (-6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} - 1740 \cdot 3^{\frac {1}{4}} \sqrt {2} \sqrt {6 \, \sqrt {3} + 18} + 1740 \cdot 3^{\frac {1}{4}} \sqrt {-6 \, \sqrt {3} + 18}\right )} \arctan \left (\frac {3^{\frac {3}{4}} {\left (x + 3^{\frac {1}{4}} \sqrt {-\frac {1}{6} \, \sqrt {3} + \frac {1}{2}}\right )}}{3 \, \sqrt {\frac {1}{6} \, \sqrt {3} + \frac {1}{2}}}\right ) + \frac {1}{6912} \, \sqrt {2} {\left (37 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 666 \cdot 3^{\frac {3}{4}} \sqrt {2} \sqrt {6 \, \sqrt {3} + 18} {\left (\sqrt {3} - 3\right )} - 666 \cdot 3^{\frac {3}{4}} {\left (\sqrt {3} + 3\right )} \sqrt {-6 \, \sqrt {3} + 18} + 37 \cdot 3^{\frac {3}{4}} {\left (-6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} - 1740 \cdot 3^{\frac {1}{4}} \sqrt {2} \sqrt {6 \, \sqrt {3} + 18} + 1740 \cdot 3^{\frac {1}{4}} \sqrt {-6 \, \sqrt {3} + 18}\right )} \arctan \left (\frac {3^{\frac {3}{4}} {\left (x - 3^{\frac {1}{4}} \sqrt {-\frac {1}{6} \, \sqrt {3} + \frac {1}{2}}\right )}}{3 \, \sqrt {\frac {1}{6} \, \sqrt {3} + \frac {1}{2}}}\right ) + \frac {1}{13824} \, \sqrt {2} {\left (666 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (\sqrt {3} + 3\right )} \sqrt {-6 \, \sqrt {3} + 18} - 37 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (-6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 37 \cdot 3^{\frac {3}{4}} {\left (6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 666 \cdot 3^{\frac {3}{4}} \sqrt {6 \, \sqrt {3} + 18} {\left (\sqrt {3} - 3\right )} - 1740 \cdot 3^{\frac {1}{4}} \sqrt {2} \sqrt {-6 \, \sqrt {3} + 18} - 1740 \cdot 3^{\frac {1}{4}} \sqrt {6 \, \sqrt {3} + 18}\right )} \log \left (x^{2} + 2 \cdot 3^{\frac {1}{4}} x \sqrt {-\frac {1}{6} \, \sqrt {3} + \frac {1}{2}} + \sqrt {3}\right ) - \frac {1}{13824} \, \sqrt {2} {\left (666 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (\sqrt {3} + 3\right )} \sqrt {-6 \, \sqrt {3} + 18} - 37 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (-6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 37 \cdot 3^{\frac {3}{4}} {\left (6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 666 \cdot 3^{\frac {3}{4}} \sqrt {6 \, \sqrt {3} + 18} {\left (\sqrt {3} - 3\right )} - 1740 \cdot 3^{\frac {1}{4}} \sqrt {2} \sqrt {-6 \, \sqrt {3} + 18} - 1740 \cdot 3^{\frac {1}{4}} \sqrt {6 \, \sqrt {3} + 18}\right )} \log \left (x^{2} - 2 \cdot 3^{\frac {1}{4}} x \sqrt {-\frac {1}{6} \, \sqrt {3} + \frac {1}{2}} + \sqrt {3}\right ) + 5 \, x + \frac {25 \, {\left (x^{3} + x\right )}}{8 \, {\left (x^{4} + 2 \, x^{2} + 3\right )}} \]

input
integrate(x^2*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x, algorithm="giac")
 
output
1/6912*sqrt(2)*(37*3^(3/4)*sqrt(2)*(6*sqrt(3) + 18)^(3/2) + 666*3^(3/4)*sq 
rt(2)*sqrt(6*sqrt(3) + 18)*(sqrt(3) - 3) - 666*3^(3/4)*(sqrt(3) + 3)*sqrt( 
-6*sqrt(3) + 18) + 37*3^(3/4)*(-6*sqrt(3) + 18)^(3/2) - 1740*3^(1/4)*sqrt( 
2)*sqrt(6*sqrt(3) + 18) + 1740*3^(1/4)*sqrt(-6*sqrt(3) + 18))*arctan(1/3*3 
^(3/4)*(x + 3^(1/4)*sqrt(-1/6*sqrt(3) + 1/2))/sqrt(1/6*sqrt(3) + 1/2)) + 1 
/6912*sqrt(2)*(37*3^(3/4)*sqrt(2)*(6*sqrt(3) + 18)^(3/2) + 666*3^(3/4)*sqr 
t(2)*sqrt(6*sqrt(3) + 18)*(sqrt(3) - 3) - 666*3^(3/4)*(sqrt(3) + 3)*sqrt(- 
6*sqrt(3) + 18) + 37*3^(3/4)*(-6*sqrt(3) + 18)^(3/2) - 1740*3^(1/4)*sqrt(2 
)*sqrt(6*sqrt(3) + 18) + 1740*3^(1/4)*sqrt(-6*sqrt(3) + 18))*arctan(1/3*3^ 
(3/4)*(x - 3^(1/4)*sqrt(-1/6*sqrt(3) + 1/2))/sqrt(1/6*sqrt(3) + 1/2)) + 1/ 
13824*sqrt(2)*(666*3^(3/4)*sqrt(2)*(sqrt(3) + 3)*sqrt(-6*sqrt(3) + 18) - 3 
7*3^(3/4)*sqrt(2)*(-6*sqrt(3) + 18)^(3/2) + 37*3^(3/4)*(6*sqrt(3) + 18)^(3 
/2) + 666*3^(3/4)*sqrt(6*sqrt(3) + 18)*(sqrt(3) - 3) - 1740*3^(1/4)*sqrt(2 
)*sqrt(-6*sqrt(3) + 18) - 1740*3^(1/4)*sqrt(6*sqrt(3) + 18))*log(x^2 + 2*3 
^(1/4)*x*sqrt(-1/6*sqrt(3) + 1/2) + sqrt(3)) - 1/13824*sqrt(2)*(666*3^(3/4 
)*sqrt(2)*(sqrt(3) + 3)*sqrt(-6*sqrt(3) + 18) - 37*3^(3/4)*sqrt(2)*(-6*sqr 
t(3) + 18)^(3/2) + 37*3^(3/4)*(6*sqrt(3) + 18)^(3/2) + 666*3^(3/4)*sqrt(6* 
sqrt(3) + 18)*(sqrt(3) - 3) - 1740*3^(1/4)*sqrt(2)*sqrt(-6*sqrt(3) + 18) - 
 1740*3^(1/4)*sqrt(6*sqrt(3) + 18))*log(x^2 - 2*3^(1/4)*x*sqrt(-1/6*sqrt(3 
) + 1/2) + sqrt(3)) + 5*x + 25/8*(x^3 + x)/(x^4 + 2*x^2 + 3)
 
3.2.12.9 Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.69 \[ \int \frac {x^2 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=5\,x+\frac {\frac {25\,x^3}{8}+\frac {25\,x}{8}}{x^4+2\,x^2+3}+\frac {\mathrm {atan}\left (\frac {x\,\sqrt {-57873-\sqrt {2}\,23907{}\mathrm {i}}\,7969{}\mathrm {i}}{576\,\left (-\frac {374543}{96}+\frac {\sqrt {2}\,1155505{}\mathrm {i}}{384}\right )}+\frac {7969\,\sqrt {2}\,x\,\sqrt {-57873-\sqrt {2}\,23907{}\mathrm {i}}}{1152\,\left (-\frac {374543}{96}+\frac {\sqrt {2}\,1155505{}\mathrm {i}}{384}\right )}\right )\,\sqrt {-57873-\sqrt {2}\,23907{}\mathrm {i}}\,1{}\mathrm {i}}{48}-\frac {\mathrm {atan}\left (\frac {x\,\sqrt {-57873+\sqrt {2}\,23907{}\mathrm {i}}\,7969{}\mathrm {i}}{576\,\left (\frac {374543}{96}+\frac {\sqrt {2}\,1155505{}\mathrm {i}}{384}\right )}-\frac {7969\,\sqrt {2}\,x\,\sqrt {-57873+\sqrt {2}\,23907{}\mathrm {i}}}{1152\,\left (\frac {374543}{96}+\frac {\sqrt {2}\,1155505{}\mathrm {i}}{384}\right )}\right )\,\sqrt {-57873+\sqrt {2}\,23907{}\mathrm {i}}\,1{}\mathrm {i}}{48} \]

input
int((x^2*(x^2 + 3*x^4 + 5*x^6 + 4))/(2*x^2 + x^4 + 3)^2,x)
 
output
5*x + ((25*x)/8 + (25*x^3)/8)/(2*x^2 + x^4 + 3) + (atan((x*(- 2^(1/2)*2390 
7i - 57873)^(1/2)*7969i)/(576*((2^(1/2)*1155505i)/384 - 374543/96)) + (796 
9*2^(1/2)*x*(- 2^(1/2)*23907i - 57873)^(1/2))/(1152*((2^(1/2)*1155505i)/38 
4 - 374543/96)))*(- 2^(1/2)*23907i - 57873)^(1/2)*1i)/48 - (atan((x*(2^(1/ 
2)*23907i - 57873)^(1/2)*7969i)/(576*((2^(1/2)*1155505i)/384 + 374543/96)) 
 - (7969*2^(1/2)*x*(2^(1/2)*23907i - 57873)^(1/2))/(1152*((2^(1/2)*1155505 
i)/384 + 374543/96)))*(2^(1/2)*23907i - 57873)^(1/2)*1i)/48